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1. Introduction. Let G = [N:;A] be a network with node-set N and arc-set
A CHNx N having source s ¢ N and sink t € N. Suppose that each arc

(x,y) € A has a positive integral traversal time a(x,y) and also a positive
integral cost c(x,y) for increasing the traversal time of this arc, i.e., the
cost of increasing the traversal time of arc (x,y) from a(x,y) to

a(x,y) + v(x,y) is c(x,y)v(x,y). The question we pose and answer is the j
following: If a fixed budget b 1is available for expenditure on arcs of the

network, how does one allocate the budget b among the arcs in such a way

that the shortest (least time) directed path from s to t is made as large

as possible? It is easy to formulate this problem as a linear program, in much 1

the same way as was done in [2] for the problem of optimally increasing the flow-

[T

capacity of a network, relative to a designated source and sink, subject to a
budget constraint. For the problem at hand, it turns out that the minimum
cost flow algorithm cf [1, Chap. III, §3], when interpreted appropriately,
directly solves the problem parametrically in b. Thus this problem provides
another viewpoint on computing minimum cost source to sink flows in a capacity-
constrained network.

While we assume that we are dealing with a directed network and directed

source-sink paths, this is merely a convenience. Undirected (or mixed) networks
can be handled by the usual device of passing to an equivalent directed network

[1].

1
|
1
{

Various practical interpretations can be given for this problem. It can
be viewed as an interdiction model of transportation networks, for example.
For undirected networks, another physical interpretation is the following.
Suppose we have a string-model of the network, where there are c(x,y) strings,
each of length a(x,y), joining x and y. We also have at hand an additional

piece of string of length b and a pair of scissors. We are allowed to cut up
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this string into pieces in any way we like, cut the pieces of string in the
network and "splice in' the additional pieces as we please, the objective being
the foliowing: when we take the source-node in one hiud and the sink-node in
the other, we want to be able to pull them apart as far as the extra string of

length b will permit.

2. Linear programming formulation. Using well-known results about shortest

paths [1], we can formulate the problem posed in Section 1 as follows. Asso-
ciate with each node x € i a (variable) potential w(x). We then want to
solve the linear program

(2.1) maximize n(t) - =(s)

subject to the constraints

(2.2) “(Y) - n(x) - Y(x'y) :a(x,y), (x’y) € A’
(2.3) v(x,y) > 0, (x,y) ¢ A,
(2.4) % c(x,y)v(x,y) <b.

Here a(x,y), c(x,y) are given positive integers, b is a given nonnegative

number, and vy(x,y), m(x) are variables whose values are to be determined.
The linear program dual to (2.1)-(2.4) can now be written down. Assign

dual variables g(x,y), all (x,y) € A, to the constraints (2.2), and a dual

variable A to constraint (2.4). The program dual to (2.1)-(2.4) is:

(2.5) minimize z a(x,ylg(x,y) + b
A

i i ca o MRk e B s e
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| subject to the constraints

l, x =3,
(2.6) g(x,N) - g(li,x) = (-1, x=t,

= 0, otherwise,

5 (2.7) g(x,y) < Aex,y), (x,y) €A, |

f' .

E (2.8) gix,y) > 0, (x,y)eA

]

' (2.9) A > 0.

!

(In (2.6),
“ g(x,N) = ) g(x,y),
. {yeN: (x,y)eA} i
| ¥

g(N,x) = ) g(y,x).) ,

{yeN: (y,x)eA}

; Thus if we knew A, we would be seeking a least cost flow g of amount 1 from

s to t thre the network G = [;A], where arc (x,y) has unit flow cost

a(x,y) and capacity Ac(x,y). Hence one could solve the problem, for fixed

b, by ‘'searching on A'. There is, however, no need to do this. A better

|

l way is to solve the problem parametrically in b, starting with b = 0, for |
which the solution is obvious: take A = 1, say, and send one unit along a j
shortest (least cost) directed path from s to t. This corresponds, in the j
primal problem (2.1)-(2.4), to taking vy(x,y) = 0 all (x,y) € A and n(x)

equal to the length (cost) of a shortest (least cost) directed path from s to x.
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3. Solution procedure. Consider the following minimum cost flow problem

(discussed in [1, Chap. III, §3]):
(3.1) minimize ] a(x,y)f(x,y)
A

subject to the constraints

v, < =8,
(3.2) f(x,N) - £(N,x) = -v, x=t,

0, otherwise,

(3.3) f(x,y) < elx,y), (x,y) € A,

(3.4) f(x,y) > 0, (x,y) € A,

As described in [1], the labeling process can be used to solve this problem
parametrically in v, for all v satisfying 0 <v <V, where V is the
maximum amount of flow from s to t. The algorithm generates a finite sequence
of integral flows fp of nondecreasing amounts vp, p=0,l,...,P, where
v, = 0, each fp is a least cost flow from s to t of amount vp, and

3 0

vp = V. (The complete least cost profile a(v), for 0 < v <V, can then be

obtained from the sequence of points (vp,aD), p=20,1,...,P, where

ap ) a(x,y)fp(x,y), by joining distinct adjacent points of this sequence in

the (v,a)-plane with line segments. The resulting function is piecewise linear

and convex.) In the course of the algorithm, other numbers are generated: at
stage p of the computation, certain nonnegative node integers ﬂp(x) and

resulting nonnegative arc integers Yp(x,y) = max(o,np(y) - ﬂp(x) - a(x,y))

are obtained. (Here ﬂo(x) = 0, x € N, and hence yo(x,y) = 0, (x,y)ed.)




(3.5) tp(t) = p, tp(s) =0,

(3.6) tp(y) - tp(x) < a(x,y) = fp(x,y) =0,
(3.7) 1p(y) - lp(x) > a(x,y) =o fp(x,y) = c(x,y).
(In place of (3.7), we can write

(3.7") Yp(x,y) >0 = fp(x,y) = c(x,y).)

It follows that (see {1, p. 117])

(3.8) PV, - { a(x,y)fp(x,y) S } c(x,y)vp(x,y).

Define

(3.9) bp z ; c(x,y)Yp(x,y)
i A =1
(3.10) . /vp
(3.11) gp(x,y) = kpfp(x,y), (x,y) € A.

Then ﬂp and Yp satisfy (2.2)-(2.4) for b = bp, and gp satisfies

(2.6)-(2.8). Moreover, from (3.5) and (3.8) we have

These numbers satisfy the optimality properties (for the stage p problem)

For vp > 0, consider the corresponding functions fp, ﬂp, and vy _.

i,
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(3.12) = =
P np(t) Ip(s) lp(t)

E a(x,y)gp(x,y) + Apbp.
Thus (wp,yp) and (gp.xp) are optimal solutions, respectiwvely, to the pair
of dual linear programs (2.1)-(2.4), (2.5)-(2.9), corresponding to the budget
b = bp. From this it can be shown that solving the minimum cost flow problem
(3.1)-(3.4) parametrically in v is equivalent to solving the linear program
(2.1)-(2.4) p;rametrically in b.

We conclude with a small exanple illustrating the solution process for

(2.1)-(2.4). Let G be the network shown in Figure 3.1 below, with the given

data (c,a) recorded as ordered pairs on arcs:

Fig. 3.1

If we go through the solution process of [1, Chap. III, §3], interpreting the
function c¢ as the arc-capacity function and the function a as the arc-cost
function, the following sequence of diagrams (Figure 3.2) indicates the various
relevant stages (corresponding to minimum s to t directed path lengths
p=23,5, 6, 8, 16, 11) of the computation. Data are recorded beside each

arc in the form [; a]; the node numbers = are recorded beside each node

barred arcs are those where Yy > 0.
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ag+xb=9+3=6
2
:
1
1
p=8, b=7, A =1/3
a.g+Ab=l7+7-8
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a-g + Ab = 222 = 10
§
3
p=11, b=17, A =1/4 i
a-g+xb=21—:~—7-=11 1

Fig. 3.2

The last diagram in Fig. 3.2 shows a maximum flow f of amount v = 4,
with a minimum cut ({s,x},{y,t}) separating s from t of capacity 4 con-
sisting of the arcs (s,y), (x,y), (x,t). For budget b > 17, i.e. for least
s to t directed path length p > 11, we would increase w(y) and =n(t) = p

by a constant amount A, causing vy(s,y). vy(x,y), and y(x,t) to increase

by A. In the example, these are the only arcs on which the budget would be
allocated at this stage, but this is not so in general. What is true in general
is that other arcs, not in the minimum cut but on which money is being spent |
to increase their traversal times, would not receive any further allocation :
from increased budgets. (See, for instance, the example analyzed in [1, Chap. III,
§3].

Budgets b intermediate between two successive ones in Figure 3.2 can be :

allocated by taking the appropriate convex combination of the two successive




e e

solutions. Figure 3.3 shows the minimum s to t directed path length p as
a function of the budget b, obtained by joining successive (b,p) pairs of
Figure 3.2 with line segments. The least path length p(b) is a concave,
Piecewise linear function of b, the slopes of successive pieces being equal
to the successive values of A = 1/v.

Notice the way resources are expended on the arcs (x,y) and (y,x), or,
equivalently, on the undirected arc joining x and y, throughout the
diagrams of Figure 3.2. For small budgets, resources are allocated to increase
its length, for medium budgets no resources are allocated to this arc; but for

large budgets, its length is again increased.
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Fig. 3.3
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